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Abstract In this paper, we study the numerical long time integration of large stiff
systems of differential equations arising from chemical reactions by exponential prop-
agation methods. These methods, which typically converge faster, use matrix-vector
products with the exponential or other related function of the Jacobian that can be
effectively approximated by Krylov sabspace methods. We equip these methods to an
automatic stepsize control technique and apply the method of order 4 for numerical
integration of some famous stiff chemical problems such as Belousov-Zhabotinskii
reaction, the Chapman atmosphere, Hydrogen chemistry, chemical Akzo-Nobel prob-
lem and air pollution problem.

Keywords Numerical integrator · Mathematical modeling · Chemical reactions ·
Exponential method · Krylov subspace method · Stiff systems · Ordinary differential
equation

1 Introduction

The construction of an efficient algorithm for the solution of large sets of stiff ordinary
differential equations has been a central concern of numerical analysis. A major diffi-
culty in solving large stiff systems of nonlinear differential equations is choosing an
efficient time integration scheme. Typically one has to make a decision whether to use
an explicit or an implicit method. Explicit schemes require the least amount of com-
putation per time step but the allowable time step is severely restricted by the stability
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requirements. Implicit schemes have much better stability properties and allow sig-
nificantly larger time steps compared to explicit integrators. However, this advantage
comes at the expense of a significant increase in the amount of computation needed
at each time iteration.

In this paper, we study exponential propagation methods [13] for the integration of
large stiff systems of nonlinear initial value problems

y′ = f (y), y(t0) = y0. (1)

These methods use Krylov subspace projections and a Rosenbruck-type methods
framework [4] to construct exponential propagation iterative methods. By equipping
these methods to an automatic stepsize control technique based on error of the method,
we apply the method of order 4 for numerical integration of some famous stiff chemical
problems such as Belousov-Zhabotinskii reaction, the Chapman atmosphere, Hydro-
gen chemistry, chemical Akzo-Nobel problem and air pollution problem. These prob-
lems are stiff ODEs in long time integration which the standard numerical methods
fail in deal with them. For the especial properties of exponential propagation methods,
applying them on the stiff ODEs in long time integration will be successful.

Next sections of this paper are organized as follows: In Sect. 2, we recall the main
concepts and construction of exponential propagation technique. In Sect. 3, the meth-
ods of classical order 4 are described which have further favorable properties when
applied to stiff problems and also they are equipped by an automatic stepsize con-
trol technique. In Sect. 4, we apply exponential propagation methods to solve some
important initial value problems that arise from mathematical modeling of chemical
reaction.

2 Exponential propagation method

In this section, we give a brief review of a general class of exponential integrators
introduced in [13]. Starting with y0 as an approximation to y(t0), an approximation to
y(t0 + h) is computed with

ki = ϕ(γ h A)

⎛
⎝ f (ui ) + h A

i−1∑
j=1

γi j k j

⎞
⎠ , i = 1, . . . , s, (2)

ui = y0 + h
i−1∑
j=1

αi j k j , (3)

y1 = y0 + h
s∑

i=1

bi ki . (4)

Here A = f ′(y0), ϕ(z) = (ez − 1)/z and γ, γi j , αi j , bi , with γi j = αi j = 0 for
i ≤ j , are the coefficients that determine the method. The internal stages u1, . . . , us

can be computed one after other, with one multiplication by ϕ(γ h A) and a function
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evaluation at each stage. The scheme would become an explicit Runge-Kutta method
for ϕ(z) ≡ 1 (and γi j = 0), and a Rosenbrock method for the choice ϕ(z) = 1/(1−z).
The most effective way of approximating the matrix exponential is Krylov subspace
projections. The series expansion form of the matrix exponential eτ A multiplied by a
vector v is

eτ Av = v + (τ A)

1! v + (τ A)2

2! v + · · · + (τ A)m

m! v + · · · , (5)

where τ ∈ R is a number which corresponds to the time step and A ∈ R
N×N .

Clearly the vector eτ Av belongs to an infinite dimensional space of vectors
{v, Av, A2v, . . . , Amv, . . .}. To approximate (5), we will project the operator eτ A

and the vector v onto a finite dimensional Krylov subspace

Skr y = Span{v, Av, A2v, . . . , Am−1v}.

In order to do this, we compute an orthonormal basis {v1, . . . , vm} of the subspace
Skr y using the Arnoldi algorithm [11]. If we define the matrix H with elements hi j =
(vi , Av j ), i, j = 1, . . . m, we can rewrite the Arnoldi algorithm in a matrix form as

AVm = Vm H + hm+1,mvm+1eT
m, (6)

where em = [0 . . . 0 1] is a unit vector in R
m and Vm = [v1, . . . , vm] is a m × m

matrix with vectors vi as its columns. It is clear that V T
m Vm is a m × m identity matrix

and Vm V T
m is a projector from R

N onto Skr y . Using V T
m vm+1 = 0 from (6), we have

H = V T
m AVm and if we want to use projection onto Skr y to approximate Av, we can

write Av ≈ Vm V T
m AVm V T

m v = Vm H V T
m v. Similarly we can approximate the action

of any operator f (A) on a vector v using the Krylov subspace projection as follows

f (A)v ≈ Vm f (H)V T
m v = Vm f (H)V T

m v1||v||2 = ||v||2Vm f (H)e1, (7)

where we use v1 = v/||v||2. In particular, to approximate the exponential in (5) we
write

eτ Av ≈ ||v||2Vmeτ H e1.

Even for very large matrices it is possible in cases of interest to obtain desired accuracy
by computing only 15–20 Krylov vectors.

2.1 Order conditions

Now we recall the construction of higher-order methods. The order conditions for
the exponential methods can be derived similarly to Rosenbrock methods, see [4].
Therefore, we only state the conditions here. For abbreviation we define

βi j = αi j + γi j . (8)
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Table 1 Order conditions for the exponential propagation methods up to order 5

Elementary differential τ � j (t) Pt (γ )

f 1 1

f ′ f
∑

k β jk 1/2(1 − γ )

f ′′( f, f )
∑

k,l α jkα jl 1/3

f ′ f ′ f
∑

k,l β jkβkl 1/3(1/2 − γ )(1 − γ )

f ′′′( f, f, f )
∑

k,l,m α jkα jlα jm 1/4

f ′′( f ′ f, f )
∑

k,l,m α jkβklα jm 1/8 − γ /6

f ′ f ′′( f, f )
∑

k,l,m β jkαklαkm 1/12 − γ /6

f ′ f ′ f ′ f
∑

k,l,m β jkβklβlm 1/4(1/3 − γ )(1/2 − γ )(1 − γ )

f (4)( f, f, f, f )
∑

α jkα jlα jmα j p 1/5

f ′′′( f ′ f, f, f )
∑

α jkβklα jmα j p 1/10 − γ /8

f ′′( f, f ′′( f, f ))
∑

α jkαklαkmα j p 1/15

f ′′( f ′ f ′ f, f )
∑

α jkβklβlmα j p 1/30 − γ /8 + γ 2/9

f ′′( f ′ f, f ′ f )
∑

α jkβklα jmβmp 1/20 − γ /8 + γ 2/12

f ′ f ′′′( f, f, f )
∑

β jkαklαkmαkp 1/20 − γ /8

f ′ f ′′( f ′ f, f )
∑

β jkαklβlmαkp 1/40 − 5γ /48 + γ 2/12

f ′ f ′ f ′′( f, f )
∑

β jkβklαlmαlp 1/60 − γ /12 + γ 2/9

f ′ f ′ f ′ f ′ f
∑

β jkβklβlmβmp 1/5(1/4 − γ )(1/3 − γ )(1/2 − γ )(1 − γ )

Theorem 2.1 [6] An exponential method (2)–(4) with A = f ′(y0) is of order p iff

s∑
j=1

b j� j (τ ) = Pτ (γ ),

for elementary differentials τ up to order p. Here, � j (τ ) and the polynomials Pτ (γ )

are listed in Table 1 for p ≤ 5.

The only difference to the order conditions for Rosenbrock methods is in the polyno-
mials Pτ (γ ).

Theorem 2.2 [6] The method (2)–(4) is exact for linear differential equations iff for
all n = 1, 2, 3, . . .

∑
b j1β j1, j2β j2, j3 . . . β jn−1, jn = 1

n

(
1

n−1
−γ

)(
1

n−2
−γ

)
· · ·

(
1

2
−γ

)
(1−γ ) .

These conditions can be fulfilled if γ be the reciprocal of an integer. Then only a finite
number of these conditions are needed. The others are satisfied automatically because
for sufficiently large n, both sides of the above equation then vanish.
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2.2 Stability

Applying a perturbed method (2)–(4) to the linear test problem y′ = Ay gives

k̃i = ϕ(γ h A)

⎛
⎝Aỹ0+b+h A

i−1∑
j=1

βi j k̃ j

⎞
⎠ +δi ,

ỹ1 = ỹ0+h
s∑

i=1

bi k̃i .

Here, δi is a perturbation at the i th stage and y0 is a perturbed starting value. Subtracting
from the unperturbed scheme yields for the error ε1 = ỹ1 − y1 that

li = ϕ(γ h A)

⎛
⎝Aε0 + h A

i−1∑
j=1

βi j l j

⎞
⎠ + δi ,

ε1 = ε0 + h
s∑

i=1

bi li ,

where l j = k̃ j − k j and ε0 = ỹ0 − y0. It is easy to see that

ε1 = eh Aε0 + h
s∑

i=1

bi ps−i

(
eγ h A − I

)
δi ,

where pk(z) is a polynomial of degree k with pk(0) = 1, whose coefficients are prod-
ucts of βi j/γ . In particular, when the numerical range of A is contained in the left
half-plane, then we have the stable error recurrence

‖ε1‖ ≤ ‖ε0‖ + Ch
s∑

i=1

‖δi‖.

The stability analysis could be extended to nonlinear problems y′ = Ay + g(y) in a
similar way to what has been done for Rosenbrock methods, cf. [8].

3 Construction of fourth-order methods

3.1 Reduced methods

We recall that one step of the exponential propagation method evaluated in the form
(2)–(4) contains s multiplications of ϕ(γ h A) with a vector. Since this vector is dif-
ferent in each of these s steps, the approximation with a Krylov subspace method
requires the construction of bases of s Krylov spaces with respect to the same matrix
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A but with different vectors. We study an alternative formulation of the method for
computing ϕ( j z), j = 2, 3, . . ., recursively from ϕ(z)

ϕ( j z) = j − 1

j
(zϕ(z) + 1) ϕ (( j − 1)z) + 1

j
ϕ(z), j = 2, 3, . . . (9)

Therefore if we approximate ϕ(γ h A)v by the Krylov subspace projection to get

ϕ(γ h A)v ≈ Vmϕ(γ h Hm)V T
m v,

then rather than performing the Krylov projection again to compute ϕ( jγ h A)v, we
can use recurrence (9). For j = 2, 3, . . .

ϕ( jγ h A)v ≈ Vmϕ( jγ h Hm)V T
m v

= Vm

[
j − 1

j
(γ h Hmϕ(γ h Hm) + Im) ϕ (( j − 1)γ h Hm) + 1

j
ϕ(γ h Hm)

]
V T

m v.

We introduce auxiliary vectors

di = F(ui ) − F(y0) − h A
i−1∑
j=1

αi j k j . (10)

Note that for A = f ′(y0), this corresponds to a first-degree Taylor expansion of f
around y0, hence the vectors di are usually small in norm. From (8) and (10) we have

ki = k1 + ϕ(γ h A)di + ϕ(γ h A)h A
i−1∑
j=1

βi j k j .

Because of (9), we can choose βkl such that for γ = 1/n and i = 1, . . . , n

ki = ϕ (iγ h A) f (y0),

knj+i = k1 + ϕ (iγ h A) dnj+i , j ≥ 1. (11)

All the coefficients βkl are uniquely determined by (11). In order to apply the recur-
rence formulas (9) in (11), we further choose

αnj+i,l = αnj+1,l , i = 1, . . . , n, l, j ≥ 1,

which gives

unj+i = unj+1,

dnj+i = dnj+1, i = 1, . . . , n, j ≥ 1.
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This reduces the number of f -evaluations and of evaluations of ϕ(γ h A) by a factor
of n compared to the general scheme (2)–(4). This is particularly important when
this reduced method is combined with a Krylov process for approximating ϕ(γ h A)v,

since in this case we need to compute a basis of a new Krylov space only at every nth
intermediate step.

3.2 Method of order 4

We derive one specific seven stage method of order four with γ = 1/3. The reduced
version of this scheme is given by

k1 = ϕ

(
1

3
h A

)
f (y0),

k2 = ϕ

(
2

3
h A

)
f (y0),

k3 = ϕ(h A) f (y0),

w4 = − 7

300
k1 + 97

150
k2 − 37

300
k3,

u4 = y0 + hw4,

d4 = f (u4) − f (y0) − h Aw4,

k4 = ϕ

(
1

3
h A

)
d4,

k5 = ϕ

(
2

3
h A

)
d4, (12)

k6 = ϕ(h A)d4,

w7 = 59

300
k1 + 7

75
k2 − 269

300
k3 + 2

3
(k4 + k5 + k6),

u7 = y0 + hw7,

d7 = f (u7) − f (y0) − h Aw7,

k7 = ϕ

(
1

3
h A

)
d7,

y1 = y0 + h

(
k3 + k4 − 4

3
k5 + k6 + 1

6
k7

)
.

The scheme (12) requires only three function evaluations. When using Krylov approx-
imations, the computational cost is dominated by computing k1. As discussed before,
the reason is that k2, k3, k5, and k6 can be computed recursively from (9) or the more
stable recurrence (15) below.
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3.3 Embedded method

Embedded methods are schemes that have same matrices of coefficients αi j , βi j and
γi j and parameter γ which differ only by the coefficients b j . Since the parameters b j

are only used to compute the final approximation

y1 = y0 + h
s∑

j=1

b j k j ,

once all the vectors k j are computed, it is cheap to calculate two approximations to
solution at the cost of s − 1 extra vector additions.

We derive two embedded methods for the fourth-order seven stage method (12)
which differs from (12) only by the last formula

ŷ1 = y0 + h

(
k3 − 1

2
k4 + 2

3
k5 + 1

2
k6 + 1

2
k7

)
, (13)

and

ŷ1 = y0 + h(−k1 + 2k2 − k4 + k7). (14)

The first method has order three and the later has order two. So, since it is important
to us to make the time step as large as possible given the accuracy requirements we
choose to use method (12) with an embedded method (13).

3.4 Stopping criterion for the Krylov method

We need to decide when the Krylov approximation (7) is to be considered sufficiently
accurate. The error estimates are derived from applying the Cauchy integral formula
to the expression f (τ A)v, that is

εm = f (τ A)v − Vm f (τ Hm)e1 = 1

2π i

∫

�

f (λ)em(λ)dλ

with

em(λ) = (λI − τ A)−1v − Vm(λI − τ Hm)−1e1.

Since exact errors are inaccessible, the stopping criterion is usually based on the resid-
ual instead of error of the mth iteration. Therefore we use

ρm = 1

2π i

∫

�

f (λ)rm(λ)dλ
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with

rm(λ) = −‖v‖2hm+1,mvm+1

[
(λI − τ Hm)−1

]
m,1

.

It was proposed in [6,10] to use the norm of the generalized residual defined by

ρm = 1

2π i

∫

�

f (λ)rm(λ)dλ = −‖v‖2hm+1,1 [ f (τ Hm)]m,1 vm+1,

as an accuracy check.

3.5 Computing of ϕ(τ Hm)

If A is Hermitian, then Hm is Hermitian tridiagonal. In this case, one can simply
diagonalize and easily compute eigenvalues and eigenvectors of Hm and approximate
ϕ(τ Hm).

In the non-Hermitian case, we it is suggested to use Padé approximation to compute
the matrix exponential [9]. Here, since the roundoff error and the cost of computing
Padé approximates both increase as ‖hm‖ grows, the matrix is first scaled by a factor
of 2−k such that ‖2−kτ Hm‖ < 1/2. Then we evaluate the (6,6) Padé approximation
to ϕ(z) for the scaled matrix

ϕ(z) = 1 + 1
26 z + 5

156 z2 + 1
858 z3 + 1

5720 z4 + 1
205920 z5 + 1

8648640 z6

1 − 6
13 z + 5

52 z2 − 5
429 z3 + 1

1144 z4 − 1
25740 z5 + 1

1235520 z6
+ O

(
z13

)
.

Next, ϕ(τ Hm) is computed recursively from ϕ(2−kτ Hm) by applying the following
coupled recurrences

ϕ(2z) = 1

2

(
ez + 1

)
ϕ(z),

e2z = ezez . (15)

This recurrence is stable for all z in the left half-plane, whereas (9) becomes unstable
for large |z| because of the multiplication with z.

3.6 Automatic error control Gustafson’s approach

Error estimation is a crucial point in constructing a good exponential propagation
method. We have already described how the generalized residuals can be used to
assess the error of the Arnoldi algorithm in approximation of ϕ(γ h A). Now, we also
need a mechanism to estimate error of the new approximation to the solution at the
next time step y1 so that we can adjust the time stepsize based on this calculation. An
approach proposed first by Gustafson for the Runge-Kutta methods can be naturally
extended to the exponential propagation methods.
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Suppose we derived an exponential method of order q with certain coefficients
γ, αi j , βi j , γi j and b j , which we then compute an approximate solution yn+1 to the
system of differential equations. Assume also that we found an embedded exponential
method of order q̂ with coefficients γ, αi j , βi j , γi j and b̂ j , which gives us another
approximation to the solution ŷn+1. We want the error between approximations yn+1

and ŷn+1 to be within a predefined tolerance componentwise, i.e.

|yn+1
i − ŷn+1

i | ≤ sci , sci = Atoli + max
(
|yn

i |, |yn+1
i |

)
· Rtoli ,

where Atoli and Rtoli are the desired absolute and relative tolerances per component
prescribed by the user. The measure of the total error ε is defined as

ε =
∥∥∥∥∥

yn+1
i − ŷn+1

i

sc

∥∥∥∥∥ ,

where the norm ‖.‖ is taken to be either the normalized 2-norm or the maximum norm
depending on which of these provide a better error estimate for a particular problem.
Since the used numerical methods are of orders q and q̂ , we expect the error to behave
as

ε ≈ C · hr , r = min(q, q̂).

The optimal stepsize hopt would ensure that C · hr
opt ≈ 1. From the last two equations

we can compute the optimal stepsize as

hopt = h · r

√
1

ε
.

The error control mechanism therefore, proceeds as follows. First, we set some start-
ing values for the time step h and compute the approximations to the solution yn+1

and ŷn+1. Then, we calculate the error. If the error is larger than 1, we reduce the size
of the time step and compute the approximate solution again with the new time step.
Otherwise the solution is advanced with yn+1 and the new time stepsize is calculated
according to the above formula.

Coupling the procedure described above with the error control mechanism for the
Arnoldi algorithm in the general scheme, we estimate the new time stepsize hkr y based
on the residual in the Krylov subspace projection and the time step hopt and pick the
minimum of these to be the new time stepsize

hnew = min
(
hkr y, hopt

)
.

With this new value for the time stepsize, we proceed with integrating the system of
equations in time.
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4 Numerical experiments

The main aim of this paper is introduce in this section by applying the mentioned
method on some famous chemical problems and showing its efficiency. We have
implemented the method of order four in a Matlab code.

4.1 Belousov-Zhabotinskii reaction

The Belousov-Zhabotinskii reaction [12] may be represented by the following scheme
of homogeneous chemical reactions

(1) A + Y → X, k1 = 4.72
(2) X + Y → P, k2 = 3 × 109

(3) B + X → 2X + Z , k3 = 1.5 × 104

(4) 2X → Q, k4 = 4 × 107

(5) Z → Y, k5 = 1

Letters A, . . . , Z denote species taking part in the reactions and constants ki denote
the reaction rates. Since the Belousov-Zhabotinskii reaction is homogeneous (mean-
ing that all species are uniformly distributed in the reaction space), we only need to
consider variations of the concentrations in time. Each reaction step is characterised
by its reaction rate constant. Obviously, the rate constants differ by several orders of
magnitude which indicates the likeliness of the corresponding ODE system being stiff.
The initial conditions are given by initial concentrations of species at t = 0

A = B = 0.066, Y = X = P = Q = 0, Z = 0.002.

The ODEs system modeling of the reaction scheme is

y′
1 = −k1 y1 y2, y1(0) = 0.066,

y′
2 = −k1 y1 y2 − k2 y3 y2 + k1 y6, y2(0) = 0,

y′
3 = −k2 y3 y2 + k3 y3 y5 − 2k4 y2

3 + k1 y1 y2, y3(0) = 0,

y′
4 = k2 y3 y2, y4(0) = 0,

y′
5 = −k3 y5 y3, y5(0) = 0.066,

y′
6 = −k3 y5 y3 − k5 y6, y6(0) = 0.002,

y′
7 = −k4 y2

3 , y7(0) = 0.

The latter is considered at the interval t ∈ [0, 40] and solved using exponential
propagation method. The obtained solution of this problem at the end of time interval
is reported in Table 2. Plots in the Fig. 1 show the concentration of A, Y, P and Z
computed using the exponential propagation method.
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Table 2 The results of problem
Belousov-Zhabotiskii reaction
at t = 40

yi Solution at t = 40

y1 0.063596056700909

y2 0.000000285915255

y3 0.000000000104847

y4 0.003065397855150

y5 0.062530274724733

y6 0.000000098205770

y7 0.001402126415417

Fig. 1 Concentration of A, Y, P and Z computed using the exponential propagation method

4.2 The Chapman atmosphere

Consider the equations describing the generation and destruction of ozone in the sim-
ple Chapman model, with conditions valid for the low to middle stratosphere. In this
case, the atmosphere includes only the chemistry of O2, O and O3 [1]. In this situation
there are four chemical reactions

O + O2 + M → O3 + M k1
O + O3 → 2O2 k2
O2 + hν → 2O k3
O3 + hν → O + O2 k4

123
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Table 3 Results of the
Chapman atmosphere problem
at t = 172,800

yi Solution at t = 172, 800

y1 0

y2 1.154675314113236 × 1012

y3 0.000000171230962 × 1012

where the ki denote the reaction rates, M denotes an extra molecule required to carry
off excess energy and hν denotes the absorption of light (a photochemical reaction).
Ozone formation occurs through the first reaction while ozone destruction occurs in
the second and last reactions. For this problem, the concentration of molecular oxygen,
O2, is held constant (a reasonable assumption in the atmosphere). The first two reac-
tion rates are fixed (functions of temperature only) while the latter two (being driven
by the absorption of light) will vary diurnally. If we set y1, y2, y3 to be the concen-
trations of O, O3, O2, respectively, then the resulting system of ordinary differential
equations takes the form

y′
1 = −k1 y1 y3 − k2 y1 y2 + 2k3 y3 + k4 y2, y1(0) = 106,

y′
2 = k1 y1 y3 − k2 y1 y2 − k4 y2, y2(0) = 1012,

with the constant values

y3 = 3.7 × 1016, k1 = 1.63 × 10−16, k2 = 4.66 × 10−16,

and

ki =
⎧⎨
⎩

exp

( −ai

sinwt

)
, sinwt > 0,

0, sinwt ≤ 0,

i = 3, 4

with

a3 = 22.62, a4 = 7.601, w = π

43, 200
.

The constant 43,200 is just 12 h in seconds, so that the diurnally varying rates (k3 and
k4) have 24-h periods. The obtained solution of this problem at t = 172,800 is reported
in Table 3. Behavior of the solution components in time interval [0, 172,800=48-h]
is shown in Fig. 2.

4.3 More complexity: hydrogen chemistry

In this section we use a slightly more complicated mechanism that includes the qua-
dratic behavior found in many reaction problems. We shall use the following chemical
species [2], again with conditions valid for the lower to middle stratosphere, which
are represented by the variables y1 = [O], y2 = [O3], y3 = [OH], y4 = [HO2], y5 =
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Fig. 2 Chapman atmosphere: numerical solution obtained by exponential propagation method

[H2 O2], y6 = [N2], y7 = [O2], y8 = [H2 O], y9 = [O(1 D)]. A total of 15 chemical
reactions will be modeled

O + O2 + M → O3 + M k1
O + O3 → 2O2 k2

O(1 D) + N2 → O + N2 k3

O(1 D) + O2 → O + O2 k4

O(1 D) + H2 O → 2OH k5
OH + O3 → HO2 + O2 k6
HO2 + O → OH + O2 k7
HO2 + O3 → OH + 2O2 k8
HO2 + OH → H2 O + O2 k9
HO2 + HO2 → H2 O2 + O2 k10
H2 O2 + OH → H2 O + HO2 k11
O2 + hν → 2O k12
O3 + hν → O + O2 k13

O3 + hν → O(1 D) + O2 k14
H2 O2 + hν → 2OH k15

The constant reaction rates are

k1 = 1.46 × 10−16, k4 = 4.20 × 10−11, k7 = 6.00 × 10−11, k10 = 2.30 × 10−12,

k2 = 2.12 × 10−15, k5 = 2.20 × 10−10, k8 = 1.50 × 10−15, k11 = 1.50 × 10−12.

k3 = 2.80 × 10−11, k6 = 3.70 × 10−14, k9 = 1.20 × 10−10,

The diurnally varying reaction rates (k12, k13, k14, k15) are again mathematically ide-
alized and take the same form as in the Chapman problem with

a12 = 22.62, a13 = 7.601, a14 = 7.500, a15 = 10.40, w = π

43200
.
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Table 4 Results of the
Chapman atmosphere problem
at t = 172,800

yi Solution at t = 172,800

y1 0

y2 1.000000999850914 × 1012

y3 0.000000051603041 × 1012

y4 0.000001283441007 × 1012

y5 0.000112887143925 × 1012

Fig. 3 Hydrogen chemistry: numerical solution obtained by exponential propagation method

We hold three of the species constant y6 = 1.3×1017, y7 = 3.4×1016, y8 = 9.4×1011

and assume one to be in instantaneous equilibrium

y9 = k14 y2

k3 y6 + k4 y7 + k5 y8
.

The five remaining species react according to the differential system

y′
1 = (k3 y9 y6 + k4 y9 y7 + 2k12 y7 + k13 y2)

− (k1 y7 + k2 y2 + k7 y4) y1, y1(0) = 106,

y′
2 = k1 y1 y7 − (k2 y1 + k6 y3 + k8 y4 + k13 + k14) y2, y2(0) = 1012,

y′
3 = (2k5 y8 y9 + k7 y1 y4 + k8 y2 y4 + 2k15 y5)

− (k6 y2 + k9 y4 + k11 y5) y3, y3(0) = 106,

y′
4 = (k6 y2 y3 + k11 y3 y5) − (k7 y1 + k8 y2 + k9 y3) y4 − 2k10 y2

4 , y4(0) = 2 × 106,

y′
5 = k10 y2

4 − (k11 y3 + k15) y5, y5(0) = 107.

The obtained solution of this problem at t = 172,800 using exponential propagation
method is reported in Table 4. Plots given in the Fig. 3 show behavior of the solution
y4 = [HO2] and y5 = [H2 O2] in time interval [0,172,800=48-h].
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4.4 Chemical Akzo Nobel problem

This IVP is a stiff system of 6 non-linear differential equations. It has been taken from
[3].

Mathematical description of the problem: The problem is of the form

dy

dt
= f (y), y(0) = y0, y ∈ R

6, 0 ≤ t ≤ 180

and the function f is defined by

f =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2r1 + r2 − r3 − r4

− 1
2r1 − r4 − 1

2r5 + Fin

r1 − r2 + r3
−r2 + r3 − 2r4
r2 − r3 + r5
−r5

⎞
⎟⎟⎟⎟⎟⎟⎠

where the ri and Fin are auxiliary variables, given by

r1 = k1 · y4
1 · y

1
2
2 , k1 = 18.7,

r2 = k2 · y3 · y4, k2 = 0.58,

r3 = k2

K
· y1 · y5, K = 34.4,

r4 = k3 · y1 · y2
4 , k3 = 0.09,

r5 = k4 · y2
6 · y

1
2
2 , k4 = 0.42,

Fin = kl A ·
(

p(O2)

H
− y2

)
, kl A = 3.3, p(O2) = 0.9, H = 737.

Finally the initial vector y0 is given by y0 = (0.437, 0.00123, 0, 0, 0, 0.367)T .
Origin of the problem: The problem originates from Akzo Nobel Central Research

in Arnhem, The Netherlands. It describes a chemical process, in which 2 species, MBT
and CHA, are mixed, while oxygen is continuously added. The resulting species of
importance is CBS. The reaction equations, as given by Akzo Nobel, are

2MBT + 1
2 O2

k1
→ MBTS + H2 O

CBS + MBT
k2/K
�
k2

MBTS + CHA

MBT + 2CHA + O2
k3
→ BT + sulfate

MBT + CHA + 1
2 O2

k4
→ CBS + H2 O

MBT + CHA � MBT .CHA.
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The last equation describes an equilibrium

K s1 = [MBT .CHA]
[MBT ] · [CHA] ,

while the others describe reactions, whose velocities are given by

r1 = k1 · [MBT ]4 · [O2] 1
2 ,

r2 = k2 · [MBTS] · [CHA],
r3 = k2

K
· [MBT ] · [CBS],

r4 = k3 · [MBT ] · [CHA]2,

r5 = k4 · [MBT .CHA]2 · [O2] 1
2 ,

respectively. Here the square brackets ‘[ ]’ denote concentrations. The inflow of oxygen
per volume unit is denoted by Fin , and satisfies

Fin = kl A ·
(

p(O2)

H
− [O2]

)
,

where kl A is the mass transfer coefficient, H is the Henry constant and p(O2) is the
partial oxygen pressure. p(O2) is assumed to be independent of [O2]. The parame-
ters k1, k2, k3, k4, K , kl A, H and p(O2) are given constants. The process is started
by mixing 0.437 mol/L [MBT ] with 0.367 mol/L [MBT .CHA]. The concentration of
oxygen at the beginning is 0.00123 mol/L. Initially, no other species are present. The
simulation is performed on the time interval [0 180 min].

Identifying the concentrations [MBT ], [O2], [MBTS], [CHA], [CBS], [MBT .

CHA] with y1, . . . , y6, respectively, one easily arrives at the mathematical formulation
of the preceding subsection. Solution of this problem at t = 180 using exponential
propagation method is reported in Table 5. Behavior of the solution components is
shown in Fig. 4.

Table 5 Results of the
Chemical Akzo Nobel problem
at t = 180

yi Solution at t = 180

y1 0.116158370478195

y2 0.001119409155633

y3 0.162126567728322

y4 0.003395915545571

y5 0.164618513734356

y6 0.198954389941537
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Fig. 4 Chemical Akzo Nobel problem: numerical solution obtained by exponential propagation method

4.5 A simple air pollution problem

In this test, we illustrate the mass action law by three reactions between oxygen O2,
atomic oxygen O , ozone O3, nitrogen oxide NO and nitrogen dioxide NO2. It is
important, first, to consider the primary chemical reactions that are involved

N O2 + hν
μ1(t)
→ N O + O
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O + O2
μ2
→ O3

N O + O3
μ3
→ O2 + N O2

The first photochemical reaction says that during the light hours, due to the solar
radiation indicated here by hν, N O2 is photo-dissociated into N O and O; this reaction
is regulated by μ1(t) as specified below. We assume that the oxygen concentration O2
is constant, which is a realistic hypothesis.

Setting the concentrations y1 = [O], y2 = [NO], y3 = [NO2] and y4 = [O3], a
simple model for the air pollution in the lower troposphere is given below [7]

y′
1 = μ1(t)y3 − μ2 y1, y1(t0) = 0,

y′
2 = μ1(t)y3 − μ3 y2 y4 + s2, y2(t0) = 1.3 × 108,

y′
3 = μ3 y2 y4 − μ1(t)y3, y3(t0) = 5 × 1011,

y′
4 = μ2 y1 − μ3 y2 y4, y4(t0) = 8 × 1011.

The concentrations are given in molecules for cm3 and time in seconds. Note that
μ2 is the total number of oxygen molecules per cm3 and as a consequence is much
larger than μ1(t) and μ3. Moreover, a constant source term s2 is used to simulate the
emission of nitrogen oxide. The reported numerical results use following involved
parameters:

μ1(t) =
{

10−40 night − hours : 8p.m. − 4a.m.,

10−5e7sec(t) day − hours : 4a.m. − 8p.m.,

μ2 = 105, μ3 = 10−16, s2 = 106,

where

sec(t) =
(

sin
( π

16
(th − 4)

))0.2
, th = th − 24

[
th

24

]
, th = t

3, 600
,

here [z] stands for the floor function.
Figure 5 shows the results for a period of 5 days, that is, from 4 a.m. (t0 = 144, 00)

up to 4 a.m. of the next 5 days (tend = 504, 000), obtained with exponential propaga-
tion method.

5 Conclusion

The primary objective of using exponential propagation methods is to avoid the restric-
tive stability condition which constrains the maximum allowed time step for explicit
schemes. This becomes important if system of differential equations is stiff. Because
of the stability condition, the time step in an explicit scheme has to be very small in
order to obtain a stable method. Thus, the time step restriction becomes severe if the

123



J Math Chem (2011) 49:2210–2230 2229

Fig. 5 The air pollution model: numerical solution obtained by exponential propagation method

system has to be integrated over long periods of time. In implicit scheme since the
problems we are interested in are large, a Krylov projection based iterative method has
to be used to invert a matrix. Due to the stiffness of the Jacobian matrix we can expect
the convergence of an iterative method to be very slow, so that the larger time step
advantage of an implicit methods is overweighed by the number of iterations required
to invert the matrix.

Since the selected systems of ODEs in this paper are stiff systems in long peri-
ods of time, we suggested applying exponential propagation methods on them. These
methods provide an alternative to avoid the limitations of both explicit and implicit
methods. First, they allow a stable time integration to be performed with the time step
greatly exceeding the stability bound. Second, as was shown in [5], the convergence
of the Krylov projection method used in an exponential propagation scheme exceeds
that of the same Krylov projection technique used to invert a matrix in an implicit
method.
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